Model Learning with Local Gaussian Process Regression
نویسندگان
چکیده
Precise models of the robot inverse dynamics allow the design of significantly more accurate, energy-efficient and more compliant robot control. However, in some cases the accuracy of rigidbody models does not suffice for sound control performance due to unmodeled nonlinearities arising from hydraulic cable dynamics, complex friction or actuator dynamics. In such cases, estimating the inverse dynamics model from measured data poses an interesting alternative. Nonparametric regression methods, such as Gaussian process regression (GPR) or locally weighted projection regression (LWPR), are not as restrictive as parametric models and, thus, offer a more flexible framework for approximating unknown nonlinearities. In this paper, we propose a local approximation to the standard GPR, called local GPR (LGP), for real-time model online-learning by combining the strengths of both regression methods, i.e., the high accuracy of GPR and the fast speed of LWPR. The approach is shown to have competitive learning performance for high-dimensional data while being sufficiently fast for real-time learning. The effectiveness of LGP is exhibited by a comparison with the state-of-the-art regression techniques, such as GPR, LWPR and ν-SVR. The applicability of the proposed LGP method is demonstrated by real-time online-learning of the inverse dynamics model for robot model-based control on a Barrett WAM robot arm.
منابع مشابه
Local Gaussian Process Regression for Real Time Online Model Learning and Control
Learning in real-time applications, e.g., online approximation of the inverse dynamics model for model-based robot control, requires fast online regression techniques. Inspired by local learning, we propose a method to speed up standard Gaussian process regression (GPR) with local GP models (LGP). The training data is partitioned in local regions, for each an individual GP model is trained. The...
متن کاملLocal Gaussian Process Regression for Real Time Online Model Learning
Learning in real-time applications, e.g., online approximation of the inverse dynamics model for model-based robot control, requires fast online regression techniques. Inspired by local learning, we propose a method to speed up standard Gaussian process regression (GPR) with local GP models (LGP). The training data is partitioned in local regions, for each an individual GP model is trained. The...
متن کاملReal-Time Local GP Model Learning
For many applications in robotics, accurate dynamics models are essential. However, in some applications, e.g., in model-based tracking control, precise dynamics models cannot be obtained analytically for sufficiently complex robot systems. In such cases, machine learning offers a promising alternative for approximating the robot dynamics using measured data. However, standard regression method...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملDomain Decomposition Approach for Fast Gaussian Process Regression of Large Spatial Data Sets
Gaussian process regression is a flexible and powerful tool for machine learning, but the high computational complexity hinders its broader applications. In this paper, we propose a new approach for fast computation of Gaussian process regression with a focus on large spatial data sets. The approach decomposes the domain of a regression function into small subdomains and infers a local piece of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advanced Robotics
دوره 23 شماره
صفحات -
تاریخ انتشار 2009